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NASA TT F-9334 

THE RAYLEIGH-RITZ METHOD W I T H  HERMITIAN INTERPOLATION 
POLYNOMIALS 

S. Fhlk 

Hermitian interpolation polynomials are applied t o  the de- 

velopment of admissible or  comparison functions f o r  the Ritz 

method, fo r  simplification of the calculation of e l a s t i ca l ly  

supported beams, harmonically vibrating a t  constant pressure 

(two-parameter eigenvalue problem). 

t ions  w i t h  constant coefficients, ready-made integration 

matrices a re  given such that  the en t i re  method i s  reduced 

t o  a mere multiplication of matrices and, consequently, 

For d i f f e ren t i a l  equa- 

readily programmed on d ig i t a l  computers. 

1. Mathematical Principles 

Given i s  the  l i nea r  ordinary d i f fe ren t ia l  equation of the order 2n i n  the 

so-called self-conjugate form 

L[y] G (- 1)" (gny(n))(n) + - - . 4- (q: y")" - (gi y')' + yc y = r (1.1) 

with log ica l  functions gi(x)  and r(x)+% and 2n l i nea r  boundary conditions fo r  

x = 0 and x -- &, i n  the form of 

(1.2) 

where bo and b t  denote the vectors of the boundary derivative$s:-n" 

9 Numbers i n  t h e  margin indicate pagination i n  the or iginal  foreign text.  

+ss Details f o r  this case and f o r  a l l  problems in this Section a re  given by 
Collatz ( B i b l . 1 ) .  

+ ~ t  The symbol + indicates transposition of a matrix o r  of a vector. 
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g o  = (yo, g;, y;, . . . , !Jf’z-*) > *  1: 111 = (yl, g;, g;’, . . . , ~ $ 2  *-I)) , (1.3 1 
and whereFti, andRt a re  two square matrices of the  order 2n. 

l a r  t o t a l  matrix 

O f  the  rectangu- 

(1.4) 

it i s  required only t h a t  column regularity exists, Le. ,  t ha t  l i nea r  independ- 

ence o f  the boundary conditions (1.2) i s  present, 

not coupled, eq.(1.2) will have the special form 

If the two boundaries are 

(1.5 ) 

which, however, i s  of no importance for  what follows. 

Now, l e t  TI = nd + l& be a certain “energy expressionrt ( in  mechanics, f o r  

example, n = W - A where W is the  work of deformation and A the  work done by 

the  load) where nd i s  due t o  the discrete  boundary values and & t o  t h e  continu- 

ous deposition i n  the f i e ld  0 5 x s 4. 

most quadratic i n  the functions y, y’, y’*,..., Y ( ~ ) ,  respectively in t h e i r  

boundary derivatives conibined in to  the vector 

Both components a re  assumed t o  be a t  

(1.6) 

/1To at the points x = 0 and x = 4: 

(1.7 1 

(1.8 1 

1 ‘  I 1 

0 0 

1 
2 

= -.; j ! I ( ~ ” ~  T 
* -+ !\z !I*” + !/I !I” y yo pz) (1.c - / r !I (1.r + j 1 i1.r 

- 0  

I r , = - & * 9 i ‘ U - - * f + / , L  at \ ! [ * = % .  

If, then, the expression n = nd + I l l  is made in to  the extremumwith reference 

t o  a l l  admissible functions y(x) - these a re  functions that sa t i s fy  a l l  irn- 

portant (geometric) boundary conditions - , then the expressions 

L[y;  - I’ r- ( j  (1.9) 

sat isfact ion of the residual (dynamic) boundary conditions (1.10) 

2 
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are  necessary conditions f o r  the wanted extremals; t h i s  f a c t  was ut i l ized  by 

Ritz  i n  the following manner: 

argument 

F i rs t ,  the  energy term n, by means of a l i nea r  

I (1.11) y(.c) = n, v,(z) +- * - ?- ( f Q  UQ(Z) - duc,+l(z) 

of :admissible functions vi(x)  with s t i l l  f ree  constants a, but fixed d i s  

transformed in to  an equivalent energy ’ii consisting of quadratic forms and scalar 

products. If eq.( l . l l )  i s  abbreviated t o  

!,(.?I =- (1.12) 

with 

and 

I (1.14) 

then a substi tution of eq. (1.2) i n to  eq. (1.7) w i l l  yield d i rec t ly  

1 I 

with 
0 (1.16) ($ jv  a” = .i !/“(.C) u q r ,  d q r )  * (1.C; 6) = 

v - 0  
I 

(1.17 ) 

(1.18) 

1: = j r(.r) u(x) d.c 
0 

I 
/k = J /(z) dx = C O l l S l  . 

0 I 

The energy TId [eq.(1.8)] has  been transformed by the argument (1.12) into 
1 

which means that the t o t a l  equivalent energy w i l l  then read 

(1.20) 

T h i s  equivalent energy was used by Ritz f o r  the extremum with reference t o  the 

s t i l l  variable coefficients a i  : 

3 



I 

L -  

c -  

c o r  

(1.21) 

(1.22) 

where t he  symbol 

t h e  last  element 

fixed constant. 

transposition of 

A means tha t  the l a s t  rows of the m t r i c e s  3 and C9 as w e l l  as 

of the vectors $3 and t must be deleted since d had been a 

Thus, the l i nea r  system of equations (1.22) represents a f i n i t e  

the d i f f e ren t i a l  equation (1.1). I f  t he  coefficients ai a re  

calculated from eq.(1.22), then t h e  extrema1 of the equivalent problem w i l l  be 

available, according t o  e q . ( l , l l ) ,  as a function of x, 

O f  special  interest i s  also the so-called holohomogeneous case: since 

r ( x )  E 0 i n  eq.(l . l)  and tr = 0 i n  eq.(1.2), it follows t h a t  d = 0 in the argu- 

ment (1.11) and r = 0 i n  eq.(1.17). 

So as t o  have any nontr ivial  solutions exist a t  a l l ,  a t  l e a s t  one of the d i f -  

Similarly, f in eq.(1.8) will also vanish. 

f e ren t i a l  expressions on the  left-hand side of eq.(l.l) must contain a factor  A, 

so t h a t  eqs.(l.l) and (1.2) can be written in the form of 

L[y] = A\l[!j] -2  N[y]  = 0 ,  

$10 y o  4 '3il ill = (3 

I n  t h a t  case, generally cd discre te  eigenvalues A, wi th  the corresponding 

eigenfunctions y i (x)  w i l l  exist .  The eigenvalues a re  real and posit ive i f  the 

d i f f e ren t i a l  expressions 

are symmetric and posit ive def ini te .  

and (1.24) w i l l  then read 

The f i n i t e  transformation of eqs. (1.23) 

I 

(1.26) 2 n 53 911 n - A  91 a = 0 ,  

and the corresponding character is t ic  equation 

4 
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t h e  l i nea r  d i f f e ren t i a l  equation 

L[y] E - - 7 (y2 y")!' - (9, ;,!j' - go !I = r 

a -  

the l i nea r  systan of equations 
A h  L Q E ( e  - - , & Gl + Go-+ $1 a =  t + a  

. 

+[y) 411[~] -i. .Y[!y] = 0 
, ( and homo g eneou s r e  s i  dual boundary 

. 

2 a = W a - A % a  - 0 ,  

w i l l  then yield p appmximation eigenvalues AI which a l so  a l l  a r e  real and posi- 

t i v e  since the  l i nea r  argument (1.2) t ransfers  the  properties (1.25) also t o  

the matrix pair Sit; 3, 

values Ai a re  arranged in order of  magnitude, the following w i l l  apply under 

the  assumptions of eq. (1.25): 

If t h e  wanted eigenvalues A, and the approximation 

- L 0 -  I (1.28) 2i S A i  for i z 1, 2, 3, . 

A single-term argument y(x) = alv,(x) w i l l  change eq.(1.26) in to  the expression 

3 I l l , ;  , . 
L/-I. (11 arb i t ra ry ,  (ntll - A rill) ul = 0 i. e., I A I -- - 

'11 1 (1.29) 

I n  t h i s  form, A is known as the  so-called Rayleigh quotient (called a l s o  "energy 

quotient" i n  the technical l i t e ra ture) .  

method schematically: 

In  conclusion, we assemble the en t i re  

~ ~~ 

Given Problem I Equivalent Problan 

5 
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I - 
O d i . , I A i f u t  i = l , 2 , 3  , . . . ,  p ,  

if I 
I 

1 
t he  matrices 

ZUZ and 91 M[y] and N[y] 1 I t h e  d i f f e ren t i a l  expressions 

a r e  symmetric and posi t ive definite.  
- 1  

It should be specif ical ly  taken in to  consideration t h a t  the dynamic /152 

inhomogeneity of the boundary conditions (individual forces, etc. ) not only 

enters  the energy term Td and thus the vector 5 but a l so  a l l  matrices aV if 

comparison functions are selected (but not in the  case of only admissible 

functions), whereas the inhomogeneity of the  d i f f e ren t i a l  equation ( t ens i l e  

load, e tc . )  i s  expressed uniquely i n  the vector r .  Conversely, a geometric 

inhomogeneity may appear i n  the energy ?i ( for  example, e l a s t i c  support with 

prestressing) o r  may not appear i n  it (for  example, permanent support sag); i n  

any case, the inhomogeneity w i l l  enter the  last  rows of a l l  matrices a,, over 

the constant d [eq.(l . l l)] ,  no matter whether only admissible o r  comparison 

functions are selected. 

2. Hermite Interpolation Polynomials 

2cY 
A Hermitian polynomial H i ( % )  of t h e  order 2cr (and thus of the degree 2a - 

- l), is  here defined by the property tha t ,  of the 2a values 

. T  

J f . i ( O ) ,  X ( O ) ,  N : ' ( O ) ,  . . . , q - l ) ( O ) ,  , 

a l l  vanish except 

The t o t a l i t y  

f o r  the ith value which i s  equal t o  1. 

of a l l  Hermite polynomials of a permanently selected order 20 

i s  wri t ten a s  follows: 



. with the coefficient matrix 

and the vector 

I I 

Fig.1 Hermite Polynomials o f  the Order 20 = 2 
(Straight Line s ) 

\ 
\ 

7 

* \  

'\ 

/ A 
' 3  

Fig.2 Hermite Polynomials of  the  Order 212 = 4 
(Cubic Parabolas) 

7 



2cY 
For cy = 1, 2, 3, and 4,  the matrices R are  compiled i n  Table I. The course of 

a l l  these polynomials i n  the - zero-free! - in te rva l  0 I; 5 I; 1 i s  plotted i n  

Figs.1 - 4. 

1 

Fig.3 Hermite Polynomials of the Order 201 = 6 
(Parabolas of t he  5 t h  Degree) 

It i s  known that the polynomial 

has the property, exactly required for  deriving an admissible o r  comparison 

function, of expl ic i t ly  containing all boundary derivatives occurring in 

eq.(1.3). 

comparison w i t h  a Taylor se r ies  a t  the points 5 = 0 and 5 = 1. 

hand boundary, the following i s  valid: 

However, also t h e  higher derivatives a re  readily obtained by a /153 

For the  l e f t -  

8 
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with 

% a  ?a 
!p = / I !  f: j for / I  =; 0, 1, 2, . . . , 2 cb - 1 

and, similarly, f o r  the left-hand boundary, 

with 
(2.8) 

Fig.4 Hermite Polynomials of the Order 20 = 8 
(Parabolas of the  7th Degree) 

/154 Consequently, here the indices 0 and 1 must be p e m t e d  with respect t o  

eq.(2.7),and the odd (even) derivatives f o r  n = 0, 2, 4, 6...(n = 1, 3 ,  5 ,  ...> 
must be provided with negative signs. 

9 
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I 
' 0  
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-P 
s' 

0 
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0 

0 

0 

0 

0 

0 

0 0 -i- 
2 

(1 CJ 3.5 

0 0 -113 

2 0 0 -"- 

0 0 - '  
) 

I 

3. Variation of the  Boundary Values 

W e  w i l l  construct our argument function (1.11) from nothing but Hermite 

polynomials of the same order 212 according t o  eq. (2.5) and then vary those 2n 

boundary values t h a t  do not vanish because of the  boundary conditions (1.2) o r  

t h a t  are l inear ly  combined by the remaining conditions; the quant i t ies  a, thus 

W i l l  have obtained a simple geometric o r  mechanical meaning, Despite the f a c t  

t h a t  the  theory f o r  the R i t x  argument (1.11) merely s t ipulates  admissible 

10 
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functions v,(x), numerically satisfactory resu l t s  will be obtained only - speci- 

f i c a l l y  i n  multif ield problems - i f  comparison functions a re  u t i l i zed :  

functions a re  those tha t  s a t i s fy  not only the essent ia l  but a l l  2n boundary 

conditions (1.2). 

Such 

Using the new dimensionless variables 

where the syrnbol ‘ denotes a derivative t o  5 ,  we w i l l  have t o  es tabl ish for  

n = 1, i.e., f o r  the d i f f e ren t i a l  equation 

w1 =- - (‘I&) !m)’ + YO(5) !At) = I.($) ( 3 . 2 )  

(3.3) 

the  following argument -- .. 4 4 4 

! / (E)  = yo lll(E) -t $0 I l , ( t )  -k !I1 WE) i- r/; &(t) Y 

._ . - _  whereas f o r  n = 2, i.e., for 

L[y1 =((%<t) U’’(9)’’ - ((/1(t) y’(t))’ -i- 9 0  u ( t )  = r ( t )  1 (3 .L)  

the  following argument must be used: /156 

(3.5) 

Only i n  exceptional cases do the  boundary conditions (1.2) require t h a t ,  of the 

quant i t ies  (1.3), simply h a l f  must be cancelled; i n  general, however, the 

boundary values must be l inear ly  combined. This leads t o  the f a c t  tha t ,  a t  

each of the variables a,, we have not only a Hermite polynomial but a lso a 

l i n e a r  combination of the form 

11 



TABLE I1 /1%5 
INTEGRAL MATRICES FOR HEBMITIAN POLYNOMIALS OF THE ORDERS 2cr = 2, L, 6 

I 
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... 

TABLE I11 

INTE;GRAL MATRICES FOR HERMITIAN POLYNOMIALS OF 
THE ORDEX 2a = 8 

1 
232 5013 
176 400 

1 G  SO0 
630 

- 352 boo 
176 400 

- 1GSb3 
ti: , l j  

2 3 4 3 G 7 
17G400 16500 G30 -3332S00 176.100 -1G600 
1OSOOO 11 370 4b0 -17FdO0 GS.100 - 5430 

11370 3000 140 - 1GSO0 3 430 - 30 
450 140 s -  630 i .io 25 

- 176.100 - 1 G  SO0 - G3O 352 SO0 - 176400 16 800 
GS 400 5 4 3 J  1.X - 176 .:00 105 030 - 11 3 i 0  
5 XI - :;,I 2: 16 siuo - 11 370 3000 

130 - 2; - .; * - G3tJ 4bU - 1.10 
- 

1 

P O  1 so 20 1 S40 - 160 20 - 1 )  Elid: g t  = -- 4 7722 I '  *va 

where 
\u s (bl, b2, . - * 9 b,+l) (3.9) 

rows. Consequently, the in- represents a matrix with p + 1 columns and 2a = 

t eg ra l s  (1.16) and (1.17) have been transformed in to  



c 

1 

hi = J r ( t )  H,(E) (2 
0 

with 

and 

(4.2) 

with 

(3.11) 

(3.12) 

(3.13) ' 

Then, t he  computational scheme fo r  the matrices 6, and the v e c t o r r  will have 

the form 

Since a l l  matrices 6, are  symmetrical, only t h e i r  right-hand upper portion need 

be calculated. 

they a r e  anyway eliminated i n  formingthe gradient. 

Similarly, calculation of the last rows i s  not necessary since 

4. Computation of the Matrices Q and the Vector 0 



2cY 2cY 2Q 2cY 

The in tegra l  matrices@ 20, Q l 0 ,  oo0 and the vector b o  a r e  given i n  Tables I1 

and 111 f o r  CY = 1, 2, 3, 4s. For example, according t o  Table I1 the element 

I f  the functions g, and r a re  no polynomials i n  5 but a re  suff ic ient ly  ex- 

ac t ly  - possibly, piecewise - replaceable by such ( for  example, again by Hermite 

/1ss 

polynomials), readymade in tegra l  matrices can be used a lso  in t h i s  case; i n  the 

opposite case, the integration must be performed exactly o r  i n  f i r s t  approxima- 

tion. 

5. The Eigenvalue A Occurring i n  the  Boundary Conditions 

I n  holohomogeneous problems, the eigenvalue X may occur l inear ly  in the  

boundary condition and thus a t  most quadratically i n  the equivalent energy 

= nd + n, . 
= 

N N 

Consequently, the eigenvalue equation (1.26) assumes the form 
- 

~?j.) [@)Io -+ i. Wl y j? YIIJ - -/1(9l0 7- j. 31, - j? 91.~1 a = 0 , (5.1) 

i.e., t h e  coefficients scl of the character is t ic  polynomial (1.27) have now be- 

come ra t iona l  functions of A: 

35 Additional matrices will be published l a t e r  (Bibl.2) 

15  



( 5 . 2 )  1911(jb) - A 9l(i.)l = sp(jb) h -+ - - + ~~(1.) (12 + ~ ~ ( 1 . )  A $- so(+) = o . 

Since the argument functions vl(x) are admissible f o r  any parameter value A - I 

f o r  t h e  t rue  eigenvalues X, they even become exact comparison functions - 
eq. (1.28) is transformed in to  the more comprehensive statement: 

and any value of ( 5 . 3 )  

Fig. 5 Characteristic Curves Ai ( A )  

The p curve branches of the two-parametric eigenvalue problem (5.1) thus a re  

limited downward by the wanted eigenvalues A, (see also Fig.5). 

values r e l a t ive  t o  A a r e  obtained from the  necessary condition 

Their extreme 

Consequently, i f  we d i f fe ren t ia te  eq. (5.2) implici t ly  for  A and immediately 

put A = 0, we obtain 

(5.5) ;.p(l,) AQ + - * + i*@) A2 + q A )  A + io@) = 0 * 
' 

Next, the  p a i r  of equations (5.2) and (5.5) i s  multiplied successively by A, 

A2, ..., AP-1 , yielding the homogeneous system of equations 

16 
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= 0 .  (5.6) 

I 
I 

G1= 

So 

S o  

. . . . . . .  
0 .Ye sq-l . . . . . . .  0 0 
0 , i e . . . . . . .  0 0 

' 0  0 0 . . . . . . .  s*  SI 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Therefore, the vanishing of t h e  determinant o f 6  i s  a necessary condition f o r  

t he  wanted parameter values h. 

t o  the upper tr iangular form 

value A, pertaining t o  I$ i s  taken from the  next t o  the last row of 6 ,  

For pract ical  computation, 6 i s  first brought 

by rearrangement of the rows, a f t e r  which the 
N 

For p 5 1 and p = 2, we can give the solution d i rec t ly  i n  exp l i c i t  form: 

Here it must be considered tha t ,  i n  forming the difference, the highest powers 

of A are eliminated i n  both numerator and denominator. 

occurs only a single time outside of the d i f f e ren t i a l  equation, i.e., i f  the  

argument (1.11) has the form of 

If the eigenvalue h 

y(z) = a1 UI(Z) + * * + up ue(x) + 1% ai ui(.> s 1 (5.9) 

we can put simply A a i  = aPl and thus obtain a p + 1-row argument which no 

longer contains A. 

For p > 2, the described solution process i s  qui te  cumbersome; therefore, 

it i s  more convenient t o  calculate the corresponding root A from eq.(5.2) f o r  

several  estimated values of A i n  the v i c in i ty  of a suspected minimum and then 

t o  s e l ec t  the smallest of the resultant values as the opthum approximation 

value, Another method consists i n  putting X = A; however, according t o  eq.(5.1), 

17 



t h i s  will lead t o  equations of the degree 3 p  i n  A, without yielding especially 

good approximations. 

6 ,  Arguments with Less than 2n Variables a, 

Up t o  now, we assumed t h a t  a d i f fe ren t ia l  equation of t he  order 2n i s  co- , 

ordinated with an argument containing Hermite polynomials of the order 2a = L,n 

with p = 2n = cy variables ai. 

thus always leads t o  a system of equations with 2n = 4 unknowns whose solution, 

For example, the d i f f e ren t i a l  equation ( 3 . 4 )  , 

specif ical ly  i n  the holohomogeneous case, i s  somewhat tedious, a f ac t  which i s  

the more inconvenient a s  it i s  frequently desired t o  approximate only the 

smallest eigenvalue A,; however, t h i s  can already be obtained w i t h  an ordinary 

Rayleigh quotient. To decrease the number of variables, e i t he r  the order 2a o f 8  

the Hermite polynomials can be reduced o r  they are retained and arb i t ra ry  rela- 

t ions  between the 2n variables ai are created; expressed different ly ,  a new 

Ritz argument i s  derived f o r  the equivalent problem. Both methods will be de- ’ 

scribed briefly below . 
a )  The Order 20 i s  Smaller than 4n 

Here, the highest derivatives yo(2n-1) o r  yl(2n-1) can no longer be direct-  

l y  covered by the argument (1.11). However, i f  these derivatives also occur i n  

the  boundary conditions (1.2) and i f  one does not want t o  r e s t r i c t  the computa- 

t i o n  t o  only admissible functions - i n  principle,  this way out i s  not accepted 

by us  i n  what follows - a l l  necessary higher derivatives a re  found from eq.(2.6) 

o r  eq.(2.8) as l i nea r  combinations of the low derivatives so tha t ,  a lso i n  t h i s  

case, t h e  derivation of comparison functions of fe rs  no diff icul ty .  

18 



b )  Ritz Argument f o r  the 4u iva len t  Problem 

Here, we re ta in  the order 2c~ = 4nbut  combine t h e  p = 2n variables a,, i n  

a sui table  manner, in to  CJ < p new variables c,: 

a = G c  (6.1) 

(6.23 

(6.3 3 

with 

and 
a* = (a1, (12, . . . , u0; d )  

c*  = (cl. cz, . . ., c,; d ) ,  

where the  rectangular matrix Q has o + 1 columns and p + 1 rows; f o r  this 

reason, i n  the computational scheme (3.14) p must be replaced by CT and the 

matrix 8 by the matrices m. 
In  i t s e l f ,  one can a r b i t r a r i l y  dispose of the variables ai - f o r  example, 

equate a l l  except one t o  zero - since any l i n e a r  combination of comparison 

functions again consti tutes a comparison function, which specif ical ly  means 

tha t  the statement (1.28) remains valid f o r  any selection of ai. 

fu l  numerical results a re  obtained only i f  the information given by the posed 

problem (1.1), (1.2) i s  exhausted more than before: 

t h i s  by continuous different ia t ion of the d i f f e ren t i a l  equation (1.1) which 

then, together with the boundary conditions (1.2), will yield a rb i t r a r i l y  many 

boundary conditions with higher than 2n - 1- th  derivatives; these, however, 

according t o  eqs.(2.6) and (2.8) are known l inea r  combinations of the boundary 

values (1.3), which means tha t  the wanted re la t ions  between the 2x1 variables ai 

a re  found. 

polynomials higher than 4.n (as i n  t h e  example  NO.^), so tha t  now even a single- 

term argument permits raising the accuracy t o  a s  high a value as desired. 

However, use- 

The simplest way i s  t o  do 

This procedure even permits t o  se lec t  the order 212 of the Hermite 

In- 

cidentally,  this consti tutes a 

special  cases as "insertion of 

method known and proved valuable fo r  long i n  

an iteration". 
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Another type of linear combination becomes possible i f  the  solution o f  4 6 0  
l 

a d i f f e ren t i a l  equation i s  available in  the exact o r  approximate form and i f  

the same problem is  t o  be solved again with s l igh t ly  modified values, as i s  

frequently t h e  case in technical problems. Then, the 2aboundarg derivatives 
I 

of the known solution a re  used as r*framework" f o r  the modified problem, yieldin4 
i 

ra ther  satisfactory resu l t s  i n  general by using only a single-tern argument 
~ 

(Rayleigh quotient). Such frameworks o r  matrices can be used advantageously / 
a lso  i f  a problem with Hemite polynomials of a cer ta in  order - o r  e l se  with 

arbi t rary different  argument functions - had been calculated and i f  the order 

i s  t o  be increased subsequently. This yields  not only b e t t e r  resu l t s  but the 

calculation also i s  freed of a l l  rounding-off and computational e r rors  made i n  

the first passage. 

~ 

Finally, it should be mentioned t h a t ,  i n  symmetric problems (as i n  the 

example No.l), the  calculation can always be subdivided in to  a symmetrical and 

an antimetric component by a suitable combination of the variables a,. 

7. Arguments wi th  More than 2n Variables a, 

I f ,  in the holohomogeneous case, more than the first 2n eigenvalues 1, are 

t o  be approximated, eq.(l.27) must be of the degree p > 2n. T h i s  i s  achieved 

simplest by subdividing the f i e ld  of t h e  length 4 in to  2, 3, ..., f regions 

and by requiring a steady t ransi t ion o f  y, y' , y".. .y ''-' a t  the interfaces. 

I n  t h i s  manner, eq.(1.26) becomes a system of equations of the  order 4n, 6n, 

... 2fn which now permits the calculation of correspondingly mny approximation 

values A, 2: h,. However, since rrmltifield problems will be discussed only i n  a 

later report  (Bibl.2), discussion of t h i s  method w i l l  be postponed u n t i l  then. 
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8. Ekmples 

-le l+. Given i s  the d i f fe ren t ia l  equation 

(12 !/““ - 91 !I” i (lo = 0 

with constant coefficients g2, g,, g, and the  boundary conditions 

,, I 1  !/o = yo = y1 = y1 = 0 .  , 

The corresponding energy expressions are 

Thus, the equivalent energy, i n  accordance with eq.(1.20), will be 

(8.4 3 I ai? = iL-(!Iz (1120 !I1 Q h 0  T !I0 ~ 0 0 )  a 9 

from which, as a f i n i t e  transformation of eq.(8.1), it follows tha t  

1 (8.51 grad fi = (!I2 u20 -k UIO i- (10 (lloo) a = 0 . 

Fi r s t  Approximation 

We w i l l  put an argument with Hermite polynomials of the s ix th  order ac- 

of which, because of eq.(8.2), only the  two polynomials Hz and H, remain: 

G I3 

!/O) = !A ful) + Y; 1 f 5 ( t )  (8. 7 )  

which means tha t  the elements with the index pa i rs  22, 25, 52, and 55 must be 

singled out from the matrices 
6 

according t o  Table 11, this w i l l  yield 

or,  i n  combined form, 

* All examples are  taken from t h e  thesis  by G.B&e (Bibl.3). 
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!l; !I; 
-1 76033 {12 -i- 3 168 g1 1- 208 yo 427tiS y2 - 1% - 133 gn) - (3 - --*i N 6  42768 g2 - 19s g1 - 133 go 7ti032 f 3168 11, + 208 yo 

The determinant of t h i s  m a t r i x  has the form 

and, consequently, resolves into the two factors  

(8.10) 

(8.11) 

Second Approximation 

Next, we put the argument with Hermite polynomials of theeighthorder:  

where we have already canceled yo, $, yl, yy according t o  e ~ ~ ( 8 . 2 ) .  

the following four quant i t ies  w i l l  now be varied: 

Therefore, 

I (8.13) 
I 1  I 

a1 = !I; 3 1'2 = , = IJ;, u4 = y;" . 
8 8 8 

Thus, i n  the matricesfjzor Q l 0 ,  andQoo, only the first, th i rd ,  f i f t h ,  and 

seventh rows and columns must be eliminated, thus d i rec t ly  yielding the equiva- 

l e n t  problem (8.5); we then have 

108000 480 G8.100 

480 

-IS0 s 

is0 - 3  

us, = - 
68*100 150 108000 480 

(8.U) 

1 
/216000 1000 11 640 -300\ 1 

\ -3300 -5 1 000 

/237600 1296 -134280 -990\ 

(8.16) 
1296 S - 990 

- 990 -i 1296 

=--.  
2h7 1296 00 
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Because of t he  holosyrmnetry of the  boundary conditions (8.2), the problem can 

be resolved in to  a syrmnetric portion with 

y; = - y; nncl y;'! = - 9;'' 

and in to  an antimetric portion with 

(8.18) 

(see a l so  Fig.6). 

which, each separately, approximate the first and th i rd  o r  the second and fourth 

I n  this manner, two multirow matrix t r i p l e s  a re  obtained 

Fig.6 Symmetric and Antisymmetric Eigenfunctions 
f o r  Example No.1 

eigenvalue; resu l t s  a re  given i n  Table IV. 

Third Approximation 

Again, we use the argument (8.12) but make also use of the f ac t  that ,  i n  

addition t o  eq.(8,2), the following i s  valid because of eq.(8.1): 

y;',' = , 1 1 1  = 0 (8.19) 

i n  order t o  express the two variables y;' and ygr by y& and y:. 

according t o  Table I yields  

F i r s t ,  eq. (2.6) 

(8.20) 



8 8 
where f4 represents t h e  fourth column o f  the coefficient matrix R ,  namely, 

(8.21) 

8 
Using the vector a $+ (2.7) 

8 
&* = (yo y; 9;' Y;" Y1 !I; A' I (8.22) 

eq.(8.20), because of eq.(8.2) w i l l  read, i n  a more extensive form, 116 2 

Next, eq.(2.8) i s  u t i l i zed  
8 a  8 

!/I"' = 41 r: tu with iu* = (!Il - yi' - y;". , yo -y; y;' -y;//) ' (8.24) 

in accordance with eq. (2.9). 

and (8.19), t h i s  w i l l  yield 

Together w i t h  eq. (8.21) and based on eqs. (8.2) 

It i s  then easy t o  calculate from eqs.(8.23) and (8.25): 

which, substi tuted i n  eq. (8.12), yields the argument function 

with t h e  two variables a, = y:, a2 = y: and thus the  matrix (3.9) 

-lG) 1 (8.28) 
'I )  1 (-) -26 0 0 0 
() i) 0 -16 0 1 0 -26 %* = (Z) = ( 

I 
by means of which the f i n a l  transformation matrices 



. ’  

q2 I”” - g1 y“ + go 1/ = 0 
yo = 9; = y1 = y; = 0 

303 520 - 124 140) 1 . -- 
- 12‘1 140 203.520 iv, I woo -- %* Qoa 3 = 

i 

?L = 1 

[la 91 0 0  92 

can be calculated. The determinant 

‘ 3  = Q!JZO -i- yi UiO T yo UOO] = 0 I 

~~ - 

6 
l I i  withal = y;. a,, = 9; 

Hi witha, = 9:. a, = y; 

I l i  w i t h l  = y;, ap = y;“, 

97.546 3S7 

97.410 731 
88 

8 

u, = y;, a, = y;” 97.409 137 

Exact Solution 97.409 091 

(8.30) 

~ 

9.S70 968 

9.969 Gfl 

9.61~3 046 

9.869 044 

because of the double symmetry, i s  resolved as i n  eq. (8.9) in to  the two equa- 

t ions  

For a b e t t e r  comparison, the approximations (8.10), (8.U), (8.31), and the 

first two solutions obtained from eqs.(8.14) - (8.16), were divided by the 

fac tor  a t  k; see Table I V .  The exact solution reads 

Aside from this, eqs.(8.1) and (8.2) contain numerous technically important 

problems such a s  the e l a s t i ca l ly  supported beam harmonically vibrating under 

constant pressure (two-parametric eigenvalue problem). 

TABLE IV 

APPROXIMATION VALUES AND MACT SOLUTION FOR EXAMPLE N0.1 

1560.0000 

1656.6394 

1558.5485 

n = 2  

39.488 714 

“ I =--I+ 39.478 418 



I . -  

* -  
-le 2. Given i s  t h e  d i f fe ren t ia l  equation 

with the boundary conditions 

!/I, ;= 0 ,  !/I = 0 

The corresponding var ia t ional  problem reads 

and the exact solution i s  

cash: 
cash 1 

r / ( f )  = 1 - -- = 0,331 9 15 727 - 0,221 027 137 ;; 

/163 
(8.33 3 

(8.34) 

(8.35 3 

I 

(8.36 1 

A 

* e .  

Despite the f ac t  that an argument w i t h  t he  cubic polynomials & ( E )  would be 

suff ic ient  f o r  including the boundary conditions (8.34), we will perform a two- 

term argument with Hermite polynomials of t h e  order 2a, = 8. 

the  eight boundary derivatives i n  eq.(3.5), because of eq.(8.34), only two w i l l  

vanish f i r s t ;  i n  order t o  eliminate four additional derivatives of the remain- 

ing six, any four re la t ions between these will be required; we select  

In  this case, of 

and 
(8.37 

!/f) === () . , !/;I) =- - -  1 ,  I (8.38 1 
which are equations tha t  a r e  readily obtained by d i f fe ren t ia t ion  of eq. (S.33), 

i.e., from 

-- y”’ + J‘ = 0 ,  - !It’’# $- !I” ;E 0 ’ 
I (8.39) 

together with eq. (8.3h). 

a l l  t ha t  remains of the argument (3.5) is 

Consequently, making use of eqs. (8.34) and (8.371, 



. 
and t h e  boundary values y t  and yi"', occurring here, can be eliminated then by 

means of eq.(8.38) i n  accordance w i t h  eqs.(2.6) and (2.8): 

d = l ,  UI = 4 yo,  (12 = .A y;, (8. h6) 

a f t e r  which, according t o  the scheme (3.U) and Table 111, the matrices 
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a r e  calculated, i n  which case the second, fourth, f i f t h ,  and seventh rows (or  

components) of the matrices Ql08 and Qo0B (or of the vector 0 ) a re  not even 

needed. 

mined i n  eqs.(8.48) and (8.49) and only two elements in eq.(8.50); the  elements 

I n  addition, for  symmetry reasons only f ive  elements need be deter- 

denoted by an as te r i sk  are of no in te res t  a t  a l l  since they vanish together 

with the l a s t  rows i n  forming the gradient. 

Then, the f i n i t e  transformation o f  ~ ~ ( 8 . 3 5 )  t o  eq.(1.15) wi l l  read 

(8.51) 

(8.52) 

a r e  substituted in eq. (8.,!+5), yielding 

(8.55) 
e) = 0.351 343 5S7 - 0.324 023 1114 5 2  - 0.027 022 GGG E4 

- 0.000 S42 410 EG - O.OC0 057 3G7 57 , 
. .  

A comparison with eq.(8.36) shows the exceptional qual i ty  of 

the f i f t h  power of 5 i s  exactly canceled out and the seventh 

t h i s  approximation; 

power, i n  the mean, 
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represents the remainder of the terminated i n f i n i t e  series.  

values of y(5), y' (s ) ,  and y"(S) a re  compiled. 

duced correctly t o  within six places, the first derivative to  within f ive  

I n  Table V, several 

The function i t s e l f  i s  repro- 

1 I 

TABLE V 

S E v a  FUNCTIONAL VALUES FOR MAMPLE NO-2 

= 

-- 
0.0 
0 2  
0.4 
0.1; 
0.s 
1 .o 

ii.0 
6.2 
0.4 
0.ti 
0.S 
1 .0 

0.0 
0.2 
0.4 
0.G 
0.8 
1.0 

0.3.51 043 i 3  
0.3:;s 541 3s 

0.331 945 59 
0 . X S  941 37 

0.133 2tiD ,j7 
0 

0.138 260 43 

I 
0 

--0.1:!0 476 (ili 
-0.266 IS9 80 
-(J.4 12 536 08 
-0.575 540 SS 
-0.761 594 13 

0 
-6.1 30 475 i 7  
-0.266 1SD 72 
-0.412 357 13 
-0.575 340 97 
-0.761 .593 915 

-0.1;4s 034 2s 
-0.661 05s 62 
-0.i00 503 57 
-0.76s 245 SO 
--O.SGG 730 43 
-1.0 

-0.c,48 0.16 29 
-0.661 05s 37 
-0.700 GO1 30 
-0.iFS 246 85 
-0.8GG 791 41 
-1.0 

places, and the second derivative t o  within four t o  f ive places. 

Example 3 .  The following d i f fe ren t ia l  equation r e fe r s  t o  the vibration 

system of Fig.7: 

w i t h  t he  boundary conditions 

and 

where 

(8.56) 

(8.57) 

(8.58 ) 

had been assumed. The corresponding energies a re  
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' *  ( 

We se lec t  Hermite polynomials of t h e  sixth order, of  which three a re  immediately 

eliminated because of eq. (8.57). This w i l l  leave 

(8.62) 

Next, we sa t i s fy  eq. (8.58) and the auxiliary condition Vtt 

of & = 0, follows from the d i f fe ren t ia l  equation. 

= 0 which, because 

According t o  eqs.(2.6) 

-- I 

Fig.7 Clamped Beam with Ehd Load and Spring; 
Ekample No.3 

and (2.8) and Table I, t h i s  results i n  

3 1 a 6  

= 7;'' = 31 €: tu =31(-1)3 - l O q , - G  q;' -!- 10q0-4(-&) + p i ' )  (8.63 ) 

from which it follows that 

66 '1;' = [240 - 14 (3 -2)] q1 ; 66 q; = 190 + 3 (3 -1.91 q1 . (8.65 

Substi tuting this in to  eq.(8.62) will  yield the f i n a l  argument function 
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with 

and 

(8.67) 

(8.68) 

(8.69 ) 

i n  which manner, according t o  eq.(5.9), the eigenvalue X4 i s  eliminated from /166 

the  argument. 

g ies  will be 

Thus, according t o  eq.(8.61) and (8.60), the equivalent ener- 

2 1  - L:s f / , l  = (3 -A"?,: = (I2 - .I AA) (1; = n" 5 I1 
(8.70) 

with 12-4.44 0\ 
O j  (8.71) 

= 

and 

(8.72) 

I n  t h i s  case, because of t h e  many zeros i n B  (8.68), t h e  calculation of the  two 

matrices Btpzo9 o r  W+$oo23 according t o  Table I1 requires only 23 multiplications 

each (instead of 90 i n  the f u l l  matrix 8). 

meter 

If then we introduce the new para- 

I 

(8.74) 

the  f in i te  transformation of t h e  d i f f e ren t i a l  equation (8.56) will read 

while the determinant 

(8.76) 

equated t o  zero will yield the quadratic equation 
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with the roots E ~ ,  c2 from which, according t o  eq.(8.7h), it follows t h a t  

-A4 = 4,84.5 18.1, I6 ; A, =; 1,453 637 :. A, = 1,483 633 ; error O , O W %  ,I i A' = 269,026 5.5.5 ; A,  = 4.049 942 > 1, -= 4,032 159 ; error 0,4./, . ' (8. Y8) 

The exact values are  solutions of the frequency equation 

E(i.) = coshi. cos A + ! ; S(X) = c m h l  si11 1 - sinh A cos A , 
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